3.11.67 \(\int \frac {1}{\sqrt {x} (a+b x^2+c x^4)} \, dx\) [1067]

Optimal. Leaf size=331 \[ \frac {2^{3/4} c^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

[Out]

2^(3/4)*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))/(-b-(-4*a*c+b^2)^(1/2))^(3/4)/(-
4*a*c+b^2)^(1/2)+2^(3/4)*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))/(-b-(-4*a*c+b^
2)^(1/2))^(3/4)/(-4*a*c+b^2)^(1/2)-2^(3/4)*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4
))/(-4*a*c+b^2)^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)-2^(3/4)*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*
c+b^2)^(1/2))^(1/4))/(-4*a*c+b^2)^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1129, 1361, 218, 214, 211} \begin {gather*} \frac {2^{3/4} c^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*(a + b*x^2 + c*x^4)),x]

[Out]

(2^(3/4)*c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b - Sq
rt[b^2 - 4*a*c])^(3/4)) - (2^(3/4)*c^(3/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(
Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (2^(3/4)*c^(3/4)*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - S
qrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) - (2^(3/4)*c^(3/4)*ArcTanh[(2^(1/
4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 1129

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1361

Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, In
t[1/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c}, x] && EqQ[n
2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx &=2 \text {Subst}\left (\int \frac {1}{a+b x^4+c x^8} \, dx,x,\sqrt {x}\right )\\ &=\frac {(2 c) \text {Subst}\left (\int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c}}-\frac {(2 c) \text {Subst}\left (\int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c}}\\ &=\frac {(2 c) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c} \sqrt {-b-\sqrt {b^2-4 a c}}}+\frac {(2 c) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c} \sqrt {-b-\sqrt {b^2-4 a c}}}-\frac {(2 c) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c} \sqrt {-b+\sqrt {b^2-4 a c}}}-\frac {(2 c) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{\sqrt {b^2-4 a c} \sqrt {-b+\sqrt {b^2-4 a c}}}\\ &=\frac {2^{3/4} c^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.04, size = 49, normalized size = 0.15 \begin {gather*} \frac {1}{2} \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log \left (\sqrt {x}-\text {$\#$1}\right )}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*(a + b*x^2 + c*x^4)),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , Log[Sqrt[x] - #1]/(b*#1^3 + 2*c*#1^7) & ]/2

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.05, size = 42, normalized size = 0.13

method result size
derivativedivides \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(42\)
default \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(42\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/2*sum(1/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

2*sqrt(x)/a - integrate((c*x^(7/2) + b*x^(3/2))/(a*c*x^4 + a*b*x^2 + a^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 4045 vs. \(2 (251) = 502\).
time = 0.60, size = 4045, normalized size = 12.22 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)
/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*arctan(-1/4*(
sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^3*b*c^3 - (a^3*b^8 - 14*a^4*b^6*c + 72*a^5*b^4*c^2 - 160*a^
6*b^2*c^3 + 128*a^7*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^
3)))*sqrt(4*(b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*x + 2*sqrt(1/2)*(b^8 - 8*a*b^6*c + 21*a^2*b^4*c^2 - 22*a^3*b^2*c
^3 + 8*a^4*c^4 - (a^3*b^9 - 13*a^4*b^7*c + 60*a^5*b^5*c^2 - 112*a^6*b^3*c^3 + 64*a^7*b*c^4)*sqrt((b^4 - 2*a*b^
2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^
4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3))
)/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4
 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a
^5*c^2)) + 2*sqrt(1/2)*(b^9*c - 10*a*b^7*c^2 + 33*a^2*b^5*c^3 - 40*a^3*b^3*c^4 + 16*a^4*b*c^5 - (a^3*b^10*c -
15*a^4*b^8*c^2 + 86*a^5*b^6*c^3 - 232*a^6*b^4*c^4 + 288*a^7*b^2*c^5 - 128*a^8*c^6)*sqrt((b^4 - 2*a*b^2*c + a^2
*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(x)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4
*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))
/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*
c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^
4*b^2*c + 16*a^5*c^2)))/(b^4*c^3 - 2*a*b^2*c^4 + a^2*c^5)) + 2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4
- 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9
*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*arctan(1/4*(sqrt(1/2)*(b^7 - 9*a*b^5*c + 24*a^2*b^3*c^2 - 16*a^
3*b*c^3 + (a^3*b^8 - 14*a^4*b^6*c + 72*a^5*b^4*c^2 - 160*a^6*b^2*c^3 + 128*a^7*c^4)*sqrt((b^4 - 2*a*b^2*c + a^
2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(4*(b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*x + 2
*sqrt(1/2)*(b^8 - 8*a*b^6*c + 21*a^2*b^4*c^2 - 22*a^3*b^2*c^3 + 8*a^4*c^4 + (a^3*b^9 - 13*a^4*b^7*c + 60*a^5*b
^5*c^2 - 112*a^6*b^3*c^3 + 64*a^7*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2
*c^2 - 64*a^9*c^3)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c
^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(sqrt(
1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 1
2*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(-(b^3 - 3*a*b*c - (a^
3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 -
64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)) + 2*sqrt(1/2)*(b^9*c - 10*a*b^7*c^2 + 33*a^2*b^5*c^3 - 40*
a^3*b^3*c^4 + 16*a^4*b*c^5 + (a^3*b^10*c - 15*a^4*b^8*c^2 + 86*a^5*b^6*c^3 - 232*a^6*b^4*c^4 + 288*a^7*b^2*c^5
 - 128*a^8*c^6)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt
(x)*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2
)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*sqrt(-(b^3 -
 3*a*b*c - (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*
a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))/(b^4*c^3 - 2*a*b^2*c^4 + a^2*c^5)) + 1/2*sq
rt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6
*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-2*(b^2*c - a*
c^2)*sqrt(x) + (b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a
^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^
4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a
^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4
*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))
/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-2*(b^2*c - a*c^2)*sqrt(x) - (b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b
^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 6
4*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c
+ a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)*sqrt(x)), x)

________________________________________________________________________________________

Mupad [B]
time = 6.26, size = 2500, normalized size = 7.55 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(a + b*x^2 + c*x^4)),x)

[Out]

- atan((((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b
^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^
7 - 512*b^2*c^6 + ((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-
(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*
(8192*a*b^7*c^4 - 524288*a^4*b*c^7 - 98304*a^2*b^5*c^5 + 393216*a^3*b^3*c^6) + x^(1/2)*(4096*b^7*c^4 - 45056*a
*b^5*c^5 - 196608*a^3*b*c^7 + 163840*a^2*b^3*c^6))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a
^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4
*c^2 - 256*a^6*b^2*c^3)))^(3/4)) + 512*c^7*x^(1/2))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*
a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^
4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*1i - ((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 -
 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a
^6*b^2*c^3)))^(1/4)*(2048*a*c^7 - 512*b^2*c^6 + ((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2
*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c
^2 - 256*a^6*b^2*c^3)))^(1/4)*(8192*a*b^7*c^4 - 524288*a^4*b*c^7 - 98304*a^2*b^5*c^5 + 393216*a^3*b^3*c^6) - x
^(1/2)*(4096*b^7*c^4 - 45056*a*b^5*c^5 - 196608*a^3*b*c^7 + 163840*a^2*b^3*c^6))*(-(b^7 + b^2*(-(4*a*c - b^2)^
5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c
^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(3/4)) - 512*c^7*x^(1/2))*(-(b^7 + b^2*(-(4*a*c - b^2)
^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*
c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*1i)/(((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 4
8*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*
b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^7 - 512*b^2*c^6 + ((-(b^7 + b^2*(-(4*a*c - b^2)^5)
^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4
 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(8192*a*b^7*c^4 - 524288*a^4*b*c^7 - 98304*a^2*b^5
*c^5 + 393216*a^3*b^3*c^6) + x^(1/2)*(4096*b^7*c^4 - 45056*a*b^5*c^5 - 196608*a^3*b*c^7 + 163840*a^2*b^3*c^6))
*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(
1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(3/4)) + 512*c^7*x^(1/2)
)*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^
(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4) + ((-(b^7 + b^2*(
-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*
b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^7 - 512*b^2*c^6 + ((-(b
^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))
/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(8192*a*b^7*c^4 - 52428
8*a^4*b*c^7 - 98304*a^2*b^5*c^5 + 393216*a^3*b^3*c^6) - x^(1/2)*(4096*b^7*c^4 - 45056*a*b^5*c^5 - 196608*a^3*b
*c^7 + 163840*a^2*b^3*c^6))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c
 - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)
))^(3/4)) - 512*c^7*x^(1/2))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*
c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3
)))^(1/4)))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c
- b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*2i - at
an((((-(b^7 - b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c + a*c*(-(4*a*c - b^2)^
5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^7 -
512*b^2*c^6 + ((-(b^7 - b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5*c + a*c*(-(4*a
*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(819
2*a*b^7*c^4 - 524288*a^4*b*c^7 - 98304*a^2*b^5*c^5 + 393216*a^3*b^3*c^6) + x^(1/2)*(4096*b^7*c^4 - 45056*a*b^5
*c^5 - 196608*a^3*b*c^7 + 163840*a^2*b^3*c^6))*(-(b^7 - b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b
^3*c^2 - 11*a*b^5*c + a*c*(-(4*a*c - b^2)^5)^(1...

________________________________________________________________________________________